כיצד לחשב משיק

Posted on
מְחַבֵּר: Monica Porter
תאריך הבריאה: 22 מרץ 2021
תאריך עדכון: 19 נוֹבֶמבֶּר 2024
Anonim
מציאת משוואת משיק לפונקציה
וִידֵאוֹ: מציאת משוואת משיק לפונקציה

המשיק הוא אחד משלושת הפונקציות הבסיסיות הטריגונומטריות, והשניים האחרים הם סינוס וקוסינוס. פונקציות אלה חיוניות לחקר המשולשים וקושרות את זוויות המשולש לצדדיו. ההגדרה הפשוטה ביותר של המשיק משתמשת ביחס הצדדים של משולש ימין, ושיטות מודרניות מבטאות פונקציה זו כסיכום של סדרה אינסופית. ניתן לחשב משיקים ישירות כאשר ידועים אורכי הצדדים של המשולש הימני וניתן לגזור אותם גם מפונקציות טריגונומטריות אחרות.

    זהה ותייג את חלקי המשולש הימני. הזווית הנכונה תהיה בקודקוד C, והצד שמולו יהיה hypotenuse h. הזווית θ תהיה בקודקוד A, והקודקוד הנותר יהיה B. הצד הצמוד לזווית θ יהיה צד b והצד הפוך לצד θ יהיה צד a. שני צידי המשולש שאינם היפוזה ידועים כרגלי המשולש.

    הגדירו את המשיק. המשיק של זווית מוגדר כיחס בין אורך הצד שמול הזווית לאורך הצד הצמוד לזווית. במקרה של המשולש בשלב 1, שיזוף θ = a / b.

    קבע את המשיק למשולש ימין פשוט. לדוגמא, רגלי המשולש הימני של שורת השרירים שוות, כך a / b = שזוף θ = 1. הזוויות שוות גם כך θ = 45 מעלות. לכן, שיזוף 45 מעלות = 1.

    נגזר את המשיק משאר הפונקציות הטריגונומטריות. מכיוון שסינוס θ = a / h וקוסינוס θ = b / h, אז הסינוס θ / קוסינוס θ = (a / h) / (b / h) = a / b = שיזוף θ. לכן שיזוף θ = סינוס θ / קוסינוס θ.

    חשב את המשיק עבור כל זווית ודיוק רצוי:

    sin x = x - x ^ 3/3! + x ^ 5/5! - x ^ 7/7! + ... קוסינוס x = 1 - x ^ 2/2! + x ^ 4/4! - x ^ 6/6! + ... אז שיזוף x = (x - x ^ 3/3! + X ^ 5/5! - x ^ 7/7! + ...) / (1 - x ^ 2/2! + X ^ 4 / 4! - x ^ 6/6! + ...)