תוֹכֶן
- חוקי התנועה של ניוטון
- כמויות שמורות בפיזיקה
- טרנספורמציות אנרגיה וצורות אנרגיה
- דוגמאות להעברת אנרגיה
- מעקב אחר שימור אנרגיה
- דוגמה קינמטיקה: נפילה חופשית
- מה עם איינשטיין?
- מכונת התנועה התמידית?
מכיוון שפיזיקה היא המחקר כיצד זרימת החומר והאנרגיה, חוק שימור אנרגיה הוא רעיון מרכזי להסביר את כל מה שפיזיקאי לומד, ואת האופן בו הוא או היא נוהגים ללמוד אותו.
פיזיקה לא נוגעת לשינון יחידות או משוואות, אלא על מסגרת השולטת כיצד כל החלקיקים מתנהגים, גם אם הדמיון לא ניכר במבט חטוף.
החוק הראשון של התרמודינמיקה הוא שינוי מחדש של חוק שימור אנרגיה זה במונחים של אנרגיית חום: אנרגיה פנימית של מערכת חייבת להיות שווה לסך כל העבודות שבוצעו במערכת, בתוספת מינוס החום הזורם למערכת או ממנה.
עיקרון שימור ידוע נוסף בפיזיקה הוא חוק שימור המסה; כפי שתגלה, שני חוקי השימור האלה - ותוכנסו בפני שני אחרים גם כאן - קשורים יותר מקרוב העונה (או המוח).
חוקי התנועה של ניוטון
כל מחקר על עקרונות פיזיקליים אוניברסליים צריך להיות מגובה על ידי סקירה של שלושת חוקי התנועה הבסיסיים, שאותם הוקמה על ידי אייזק ניוטון לפני מאות שנים. אלו הם:
כמויות שמורות בפיזיקה
חוקי השימור בפיזיקה חלים על שלמות מתמטית רק במערכות מבודדות באמת. בחיי היומיום, תרחישים כאלה נדירים. ארבע כמויות שמורות הן מסה, אנרגיה, תנופה ו תנופה זוויתית. שלושת האחרונים האלה נופלים תחת תחום המכונאות.
מסה הוא רק כמות החומר של משהו, וכאשר מכפילים את ההאצה המקומית בגלל כוח המשיכה התוצאה היא משקל. אי אפשר להרוס או ליצור יותר מאסה מאפס ממה שאנרגיה יכולה.
מומנטום הוא תוצר של מסת עצמים ומהירותה (m ·v). במערכת של שני חלקיקים או יותר מתנגשים, המומנטום של המערכת (סכום הרגע האישי של האובייקטים) אינו משתנה לעולם כל עוד אין הפסדי חיכוך או אינטראקציות עם גופים חיצוניים.
תנופה זוויתית (ל) הוא רק המומנטום סביב ציר של עצם מסתובב, ושווה ל- m ·v · r, כאשר r הוא המרחק מהאובייקט לציר הסיבוב.
אנרגיה מופיע בצורות רבות, חלקן מועילות יותר מאחרות. החום, הטופס שבו כל האנרגיה בסופו של דבר מועדת להתקיים, הוא הכי פחות שימושי מבחינת העמדתו לעבודה מועילה, ובדרך כלל הוא מוצר.
ניתן לכתוב את חוק שימור האנרגיה:
KE + PE + IE = E
איפה KE = אנרגיה קינטית = (1/2) מv2, PE = אנרגיה פוטנציאלית (שווה ל- mזh כאשר כוח הכבידה הוא הכוח היחיד הפועל, אך נראה בצורות אחרות), IE = אנרגיה פנימית, ו- E = אנרגיה כוללת = קבועה.
טרנספורמציות אנרגיה וצורות אנרגיה
כל האנרגיה ביקום נבעה מהמפץ הגדול, וכמות האנרגיה הכוללת הזו לא יכולה להשתנות. במקום זאת, אנו מתבוננים ברציפות בצורות המשתנות אנרגיה, מאנרגיה קינטית (אנרגיית תנועה) לאנרגיית חום, מאנרגיה כימית לאנרגיה חשמלית, מאנרגיה פוטנציאלית כבידה לאנרגיה מכנית וכן הלאה.
דוגמאות להעברת אנרגיה
חום הוא סוג מיוחד של אנרגיה (אנרגיית תרמית) בכך שכאמור, הוא פחות מועיל לבני אדם מאשר צורות אחרות.
משמעות הדבר היא שברגע שחלק מהאנרגיה של מערכת הופכת לחום, לא ניתן להחזיר אותה באותה קלות לצורה שימושית יותר ללא הזנה של עבודה נוספת, הגוזלת אנרגיה נוספת.
כמות האנרגיה הקורנת שהשמש מוציאה בכל שנייה ולעולם לא יכולה בשום דרך להחזיר או לעשות שימוש חוזר, היא עדות עומדת למציאות זו, הנפרשת ללא הרף בכל הגלקסיה והיקום בכללותו. חלק מאנרגיה זו "נלכדת" בתהליכים ביולוגיים על פני כדור הארץ, כולל פוטוסינתזה בצמחים, שמייצרים מזון משלהם כמו גם מספקים מזון (אנרגיה) לבעלי חיים וחיידקים, וכן הלאה.
ניתן לתפוס אותו גם על ידי מוצרים של הנדסת אנוש, כמו תאים סולאריים.
מעקב אחר שימור אנרגיה
סטודנטים לפיזיקה בתיכון משתמשים בדרך כלל בתרשימי עוגה או בתרשימי עמודות כדי להציג את האנרגיה הכוללת של המערכת הנלמדת וכדי לעקוב אחר שינויים בה.
מכיוון שכמות האנרגיה הכוללת בעוגה (או סכום גובה הסורגים) אינה יכולה להשתנות, ההבדל בפרוסות או בקטגוריות הבר מדגים כמה מהאנרגיה הכוללת בכל נקודה נתונה היא סוג כזה של אנרגיה או אחרת.
בתרחיש, תרשימים שונים עשויים להיות מוצגים בנקודות שונות כדי לעקוב אחר שינויים אלה. לדוגמה, שימו לב שכמות האנרגיה התרמית כמעט תמיד עולה, והיא מייצגת פסולת ברוב המקרים.
לדוגמה, אם אתה זורק כדור בזווית של 45 מעלות, בתחילה כל האנרגיה שלו היא קינטית (מכיוון ש h = 0), ואז בנקודה בה הכדור מגיע לנקודה הגבוהה ביותר, האנרגיה הפוטנציאלית שלו כחלק של האנרגיה הכוללת היא הגבוהה ביותר.
גם כשהוא עולה וגם עם ירידתו, חלק מהאנרגיה שלו הופכת לחום כתוצאה מכוחות חיכוך מהאוויר, ולכן KE + PE לא נשאר קבוע לאורך כל התרחיש הזה, אלא במקום זאת פוחת בעוד אנרגיה מוחלטת E עדיין נשארת קבועה .
(הכנס כמה דיאגרמות לדוגמא עם תרשימי עוגה / סרגל העוקבים אחר שינויים באנרגיה
דוגמה קינמטיקה: נפילה חופשית
אם אתה מחזיק כדור באולינג של 1.5 ק"ג מגג 100 מ '(כ -30 קומות) מעל פני האדמה, אתה יכול לחשב את האנרגיה הפוטנציאלית שלו בהתחשב בערך של g = 9.8 m / s2 ו- PE = mזח:
(1.5 ק"ג) (100 מ ') (9.8 מ' / ש ')2) = 1,470 ג'ול (י)
אם אתה משחרר את הכדור, האנרגיה הקינטית האפסית שלו גדלה יותר ויותר מהר ככל שהכדור נופל ומאיץ. ברגע שהוא מגיע לקרקע, KE חייב להיות שווה לערך של PE בתחילת הבעיה, או 1,470 J. ברגע זה,
KE = 1,470 = (1/2) מ 'v2 = (1/2) (1.5 ק"ג)v2
בהנחה של איבוד אנרגיה כתוצאה מחיכוך, שימור האנרגיה המכנית מאפשר לך לחשב vשמתברר שכן 44.3 מ '/ ש.
מה עם איינשטיין?
סטודנטים לפיזיקה עשויים להיות מבולבלים על ידי המפורסמים אנרגיה המונית משוואה (E = mc2), תוהה אם הוא מתריס נגד החוק של שימור אנרגיה (או שימור מסה) מכיוון שזה מרמז על המרה ניתן להמיר לאנרגיה ולהפך.
זה לא מפר למעשה את אחד משני החוק מכיוון שהוא מדגים שמסה ואנרגיה הם למעשה צורות שונות של אותו הדבר. זה כמו דומה למדידתם ביחידות שונות בהתחשב בדרישות השונות של מצבים של מכניקה קלאסית.
במוות החום של היקום, לפי החוק השלישי של התרמודינמיקה, כל החומר יומר לאנרגיה תרמית. ברגע שהמרת האנרגיה הזו תושלם, לא יכולים להתרחש עוד טרנספורמציות, לפחות לא בלי אירוע יחיד יחיד היפותטי נוסף כמו המפץ הגדול.
מכונת התנועה התמידית?
"מכונת תנועה תמידית" (למשל, מטוטלת שמתנדנדת באותו תזמון וסחף מבלי להאט אף פעם) על כדור הארץ היא בלתי אפשרית בגלל עמידות האוויר והפסדי אנרגיה נלווים. כדי להמשיך את הגיזמו ידרוש קלט של עבודה חיצונית בשלב מסוים, ובכך להביס את המטרה.